
Author: Brian Webberley

Last updated: 2025.09.29

Interactive Web Design

Lab 3, Part 1: The CSS Grid

This lab is mostly a revision of creating CSS Grid, covered in Exploring Web Design. In Lab 3,
Part 2, we will make our grid responsive so that it will work on smaller screens of devices like
mobiles, and tablet computers.

Our final webpage for lab 3, Part 1 should look something like the below.

Recap: What is the CSS Grid Layout Module?

The CSS Grid Layout Module (more commonly referred to as CSS Grid or Grid Layout) is a grid-
based layout system with rows and columns. It allows you to easily create complex web
layouts. The CSS Grid makes it easier to design a responsive layout structure, without using

floats or positioning (which are more traditional and usually more difficult ways to create
layouts). The CSS Grid properties are supported in all modern browsers.

A grid of any kind also makes it easier to quickly reference a location. Just like in Excel, if we
say cell H22, we know its location is column H, row 22.

We can use a grid to determine the position of any HTML elements items such as text boxes,
images, videos. Note that unlike Excel, a browser won’t use grid lines. The CSS Grid is, by
default, invisible.

Recap: When to Use a CSS Grid?

Before we know when to use a CSS Grid, we need to first understand how HTML elements are
displayed by default on a webpage.

Inline vs Block Elements

HTML elements have default behaviour that controls their positioning. Look at the behaviour
of the paragraph elements versus the image elements in this example:

 <p>Paragraph 1</p>

 <p>Paragraph 2</p>

In the browser:

The paragraph colours were added via CSS. Notice how each paragraph expands to take up
the full width of the page, on its own line. However, the images all appear side by side, in the
same line.

Every HTML element has a default block-level or inline behaviour. Paragraphs are block-level
elements, which means that they ‘block off’ a whole line for themselves, and images are inline
elements, which means they will automatically be placed next to one another on the same
line.

Block-level elements
that you've seen so far include:

▪ Headings
▪ Paragraphs <p>
▪ Lists and list items
▪ Structural elements (header, nav,

section, article, aside, figure, footer)

Inline elements
that you've seen so far include:

▪ Images
▪ Links <a>

As you code more and more HTML elements, and notice their positioning in the browser, you'll
memorise which HTML elements are block-level or inline.

Let’s create some examples to demonstrate where we can use the CSS Grid to change the
default inline and block element behaviours.

Task 1: File and folder set up

Step 1.1: Create a new folder called lab_3 (or lab3 if you perfer – just don’t have any spaces)

Step 1.2: Inside lab_3 root folder, create a folder called images, and the files:
image_gallery.html and image_gallery.css

Step 1.3: Copy all the HTML from lab_2.html into image_gallery.html

Step 1.4: In the head section of image_gallery.html, change the CSS file link to
image_gallery.css

Step 1.5: Copy all the CSS from lab_2.css into image_gallery.css

Step 1.6: Copy the images folder from your lab_2 folder into your lab_3 folder.

Step 1.7: Open image_gallery.html in your browser and check that it looks the same as lab 2.
If not, check back through the previous steps.

Why didn’t we just continue with lab 2 instead of making a copy of it you may ask. We made
a copy of lab 2 so that if things go wrong with this lab, we can always go back to the working
lab 2 and compare the two labs to see what extra code was added that might have messed
things up.

Task 2: Creating the Grid

Hopefully from lab 2, you should have gallery cards written with code something like the
following, which you’ve copied into image_gallery.html.

This code is just a sample of one gallery card.

Step 2.1: Adding the Grid Container

Encapsulate all the articles into one <section> tag, and give that <section> tag a class of grid-
container, i.e.:

 <section class="grid-container">

Then add this to your CSS file:

.grid-container {

 display: grid;

}

What does this code do?

display: grid; - this turns <section class="grid-container"> into a grid. (See lab 7
for details on what a container is)

This means all direct child
elements of the container
will become grid items. Grid
items are boxes (squares or
rectangles) on the grid. So,
in our example, each
<article> will become a grid
item of the <section>
container.

That’s all the code needed to create a grid. However, if we view the page in the browser,
nothing will have changed. We need to tell the browser what type of grid we want.

In this example, we will create a grid of two columns.

Step 2.2: Specifying Columns

Update your CSS to the below:

.grid-container {

 display: grid;

 grid-template-columns: auto auto auto;

 gap: 50px;

 justify-content: center;

 background-color: #fafcff;

}

Save all files and view in the browser. Your webpage should now display two columns like the
following image:

Each grid item has gone into a column but what did all that code do exactly?

grid-template-columns tells the browser how many columns you would like to display
across the page (horizontally, from left to right) and what width they should be.

Here we use auto auto auto, which will tell the browser calculate the free space three
ways. More examples:

grid-template-columns: auto; - this sets the amount of columns. In this example,
it’s one column.
grid-template-columns: auto auto; = 2 columns
grid-template-columns: auto auto auto auto; = 4 columns, and so on.

You can also use create three columns using percentages. For three columns you could have
chosen 30% 30% 30%, on so on. Why not 33% 33% 33%? Using only 90% helps to leave some
space for gaps, padding and / or margins.

Percentages give greater control, which can be helpful if things don’t appear as they should
using auto. However, using auto allows for the width to be more flexible which helps makes
the page more responsive, as we will see later.

gap: 50px;
simply creates a 50 pixels gap (also called a gutter) between the two columns

justify-content: center;
Moves the columns into the centre of the webpage.
See more here: https://www.w3schools.com/cssref/css_pr_justify-items.php

background-color: #fafcff;

This is just to help us see where exactly the grid container is. It separates the background of
the grid from the background of the page. It helps you to distinguish between the two

https://www.w3schools.com/cssref/css_pr_justify-items.php

should you wish to style one or the other, you can see where your changes are having an
effect. It’s just temporary.

Step 2.3: Style the Grid Items

Just like with the grid container, it’s often helpful when coding to give grid items a background
colour so that you can see where it is. When working on a project you can always remove the
styling later if it’s not needed.

Add a background colour to the CSS gallery_card_container class to make the text stand out
from the background.

.gallery_card_container

{

 border: 1px solid rgb(128, 128, 128);

 width: 300px;

 margin-bottom: 30px;

 background-color: white;

}

Your webpage should now look like the below in your browser:

Applying different colours to the grid container and the grid container’s items different colours
makes it easier to see where the container is and where the grid items are by their background
colours.

